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Stochastic Engine Convergence Diagnostics   
Ron Glaser 12/11/01 

 
 
Introduction. 

The stochastic engine uses a Markov Chain Monte Carlo (MCMC) sampling 

device to allow an analyst to construct a reasonable estimate of the state of 

nature that is consistent with observed data and modeling assumptions. The key 

engine output is a sample from the posterior distribution, which is the conditional 

probability distribution of the state of nature, given the data. In applications the 

state of nature may refer to a complicated, multi-attributed feature like the 

lithology map of a volume of earth, or to a particular related parameter of interest, 

say the centroid of the largest contiguous sub-region of specified lithology type. 

The posterior distribution, which we will call f, can be thought of as the best 

stochastic description of the state of nature that incorporates all pertinent 

physical and theoretical models as well as observed data. Characterization of the 

posterior distribution is the primary goal in the Bayesian statistical paradigm. In 

applications of the stochastic engine, however, analytical calculation of the 

posterior distribution is precluded, and only a sample drawn from the distribution 

is feasible. The engine’s MCMC technique, which employs the Metropolis-

Hastings [1, 2] algorithm, provides a sample in the form of a sequence (chain) of 

possible states of nature, x(1), x(2), …, x(T), …. The sequencing is motivated by 

consideration of comparative likelihoods of the data. Asymptotic results ensure 

that the sample ultimately spans the entire posterior distribution and reveals the 

actual state frequencies that characterize the posterior. In mathematical jargon, 

the sample is an ergodic Markov chain with stationary distribution f. What this 

means is that once the chain has gone a sufficient number of steps, T0, the 

(unconditional) distribution of the state, x(T), at any step T ≥ T0 is the same (i.e., is 

“stationary”), and is the posterior distribution, f. We call T0 the “burn-in” period. 

The MCMC process begins at a particular state, which is selected at random or 
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by design, according to the wish of the user of the engine. After the burn-in 

period, the chain has essentially forgotten where it started. Moreover, the sample 

    x
T0( ),x T0 +1( ),... can be used for most purposes as a random sample from f, even 

though the     x T0 +t( )’s, because of Markovian dependency, are not independent. For 

example, averages involving     x
T0( ),x T0 +1( ),... may have an approximate normal 

distribution. 

 

The purpose of this note is to discuss the monitoring techniques currently in 

place in the stochastic engine software that addresses the issues of burn-in, 

stationarity, and normality. They are loosely termed “convergence diagnostics”, in 

reference to the underlying Markov chains, which converge asymptotically to the 

desired posterior distribution. 

 

The current engine has four convergence diagnostics, which will be considered 

separately in the ensuing sections. 

1. A heuristic convergence diagnostic due to Gelman and Rubin [3] uses 

multiple parallel Markov chains to simultaneously estimate the burn-in 

period length T0 and corroborate the claim of stationarity of the remaining 

samples. 

2. A cumulative sum (cusum) plot due to Yu and Mykland [4] assesses the 

dependency between successive steps of a chain and as such is a 

measure of the speed of “mixing”, i.e. how fast a chain steps through the 

posterior distribution. 

3. Tests of stationarity of samples from the post burn-in portions of multiple 

chains due to Robert, Ryden, and Titterington [5] make use of 

Kolmogorov-Smirnov two sample statistics.  

4. A test of normality of a selected mean based on post burn-in samples due 

to Robert, Ryden, and Titterington [5] makes use of a Kolmogorov-

Smirnov one sample statistic.   
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No suite of convergence diagnostics is considered definitive at this time in the 

statistical literature. Promising alternative diagnostics that may be explored in 

future versions of the stochastic engine are discussed in Cowles and Carlin [6] 

and Robert [7].  

 

 

The Gelman- Rubin Diagnostic. 

Eventually a chain generated by the stochastic engine’s MCMC process appears 

to have forgotten where it started and becomes usable as a sample from the 

posterior distribution. Ascertaining when this occurs is the goal of the Gelman-

Rubin diagnostic. 

 

A basic difficulty is introduced by the unknown character of the posterior 

distribution, which may contain several modes, or peaks, of relatively high value. 

An viable sample must visit each mode. Since the number of such modes is 

unknown, and because in sampling states of nature you only know where you 

have been, we can never be certain we have sampled sufficiently to have 

explored all the modes. This apparent impasse, however, is obviated by 

considering multiple independent (so-called parallel) chains with individual, well-

dispersed starting points. Although the chains have different starting points, they 

share a common, but unknown, limiting distribution, the posterior f. The Gelman-

Rubin diagnostic detects when the variability between the chains settles down to 

a value that is expected when the chains are all in a stationary condition of 

sampling a common distribution.  

 

In many of our applications to date the parameter of interest is a 

multidimensional function of the state of nature, ψ. For example, for the 

Savannah River lithology problem, we split a cross section1 of earth into two 

regions, upper and lower. We are interested in describing contiguous sub-regions 

                                                 
1 The use of a two-dimensional cross section in this example rather than a three-dimensional volume is 
motivated by convenience not necessity. We have completed both algorithm development and coding for the 
three-dimensional case. 
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of specified lithology types, namely sand, clay, silt, and gravel. A sub-region is 

summarized by the triple z = (z1, z2, z3), where z1 is the area, z2 is the horizontal 

coordinate of the centroid, and z3 is the vertical coordinate. By considering the 

largest contiguous sub-region for each of the two cross section halves and two of 

the lithology types, say clay and silt, the dimensionality of the parameter 

becomes p = 2x2x3 = 12. The multivariate Gelman-Rubin diagnostic, due to 

Brooks and Gelman [6], tracks the quantities Rp, detV, and detW, which are 

functions of the p-dimensional states of the parallel chains for a moving and 

expanding window of steps (called “iterations” by the authors). The window can 

be characterized by a single parameter n. For example, n = 50 refers to the 

window of length 50 iterations from iteration 51 through iteration 100, and in 

general, the window of size n considers each chain within the iteration sequence 

n+1, n+2, …, 2n. The p-dimensional matrix W estimates the within chain 

covariances for the window n, and the p-dimensional matrix B/n estimates the 

between chain covariances for the window. The pooled p-dimensional matrix 

    
V =

n−1
n

W + 1+
1
m

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ B / n ,  

where m is the number of chains, is an estimate of the covariance matrix of the 

posterior distribution of the parameter of interest, ψ. As n increases, i.e. the 

window moves and expands, the influence of the starting points on the individual 

chains diminishes, and the following conditions begin to emerge: 

• The within chain variation, summarized by the scalar quantity detW, 

stabilizes. Typically, detW increases, as new areas of modality of the 

parameter space are explored by the chains, before settling to a limiting 

value once all areas are visited. 

• The pooled chain variation, summarized by the scalar detV, stabilizes, a 

result of the combined effect of the difference between chains, 

characterized by B/n, becoming negligible and the within chain variation, 

characterized by W, stabilizing. 

• The matrices V and W are “close”. 

 6



Brooks and Gelman address the closeness issue by introducing a scalar 

measure of the distance between V and W:  

    
Rp =

n−1
n

+
m +1

m
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ λ1,  

where λ1 is the largest eigenvalue of the matrix W-1B/n. As n increases, the 

distance between V and W diminishes, the eigenvalue λ1 decreases to 0, and Rp 

approaches 1 from above. The Gelman-Rubin diagnostic, then, monitors Rp, 

detV, and detW, as a function of the window parameter n. For sufficiently large n, 

say n ≥ T0, the three conditions, Rp close to 1, detW approximately constant, and 

detV approximately constant, are satisfied. The nearness of Rp to 1 suggests 

burn-in has occurred by step T0, in that the between chain variation is negligible 

(hence the starting points have been forgotten); stabilization of the determinants 

in turn provides evidence that samples within the window starting at iteration 

To+1are an adequate characterization of the stationary posterior distribution, 

since exploration of the parameter space has apparently succeeded in visiting all 

the modes. 

 

Example plots of the statistic Rp and the determinants detV and detW as 

functions of n are shown in Figures 1 and 2 for the Savannah River lithology 

problem mentioned earlier in this section, but with dimension p = 8, based on 

analysis of the centroid but not the area. Four parallel chains were used in the 

simulation. The statistic R8 seems to approach 1 and the determinants stabilize 

around n = T0 = 500 iterations, the estimated burn-in length. The determinants 

are plotted in log scale because of the very large values that are associated with 

high dimensionality. Note that detV always exceeds detW, and the two curves go 

up and down more or less together, ultimately converging. This is apparent from 

their definitions and the fact that the between chain factor diminishes with n. 

Actually, only one of the determinants need be plotted to investigate the 

stabilization condition, but both are presented as an additional check on the 

convergence of Rp. 
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Figure 1. Rp for Savannah River Problem, p = 8, m = 4. 
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Figure 2. detV and detW for Savannah River Problem, p = 8, m = 4. 
 
 

 

There is a measure of inefficiency and conservatism in the Gelman-Rubin 

approach due to the moving and expanding window parameterized by n. For 

each n, the first n iterations are discarded for each chain, and the next n 

iterations are used for the diagnostics Rp, detV, and detW. Thus the size of the 

sample discarded necessarily equals the size of the sample retained. The 

sample discarded must be large enough that each chain appears to have 

forgotten where it started, and the sample retained must be large enough that 

each chain appears to be sampling in its entirety the same distribution (the 

posterior). By using a single parameter, n, to handle both constraints 

simultaneously, we induce the conservatism of selecting a threshold T0 that is the 

maximum of the sample sizes that would satisfy the individual constraints. 

Optimizing the process of selecting the burn-in length by treating the constraints 

separately is computationally unfeasible, so we accept the possible waste of 

samples caused by selecting too high a threshold. In practice, the simulation will 

generally be kept running after burn-in is diagnosed, say for a total of N iterations 

per chain counting from the start. Suppose there are m chains. If the Gelman-

Rubin diagnostics suggest a burn-in period of length T0, then a total of mT0 

samples are discarded, and m(N – T0) samples are available for analysis of 

properties of the state of nature. 

 

 

The Cusum Plot. 

The cumulated sum (cusum) plot monitors, for the MCMC sampling of a given 

chain, the partial sums  

 St = h(x( j )) − h(x)[j =T0 +1

t∑ ] , t = T0+1, …, n, 

where h(x) is a scalar parameter of interest, say the y-coordinate (depth) of the 

centroid of the largest contiguous region of a particular lithology type within a 

 9



volume of earth, T0 is the length of the burn-in period as estimated by the 

Gelman-Rubin diagnostic or a rough guess, and    h(x)  is the average value of h(x) 

over the post burn-in steps T0+1, …, n. The plot displays St versus t for the range 

t = T0, T0+1, …, n, with     ST0
≡ 0 and Sn = 0 by definition. 

 

The cusum accumulates the differences between the value of a parameter at a 

given step and the overall average post burn-in value. It assesses the mixing 

behavior of the chain and correlation between the x(t)’s. If the chain is slowly 

mixing the values of h(x(t)) do not change much in a neighborhood of t, and the 

plot is smoother and wanders farther from zero than if the chain is faster mixing, 

in which case the plot may resemble Brownian motion.  

 

The cusum is a subjective diagnostic that can be helpful in identifying samplers 

that are so slow mixing that alternative algorithms or parameterizations should be 

sought in order to more economically traverse the entire parameter space. 

Examples of the cusum are shown in Figures 3 and 4 for the dimension p = 8 

Savannah River problem described in the previous section and for a contrived 

lithology problem of dimension p = 2 that deals with a sub-region (affectionately 

known as the “blob”) of known size and lithology but unknown location. In each 

example the scalar parameter monitored is the depth of a contiguous region of 

specified lithology type, and the cusums of five parallel chains are plotted 

simultaneously. The Savannah River cusums of Figure 3 show faster mixing than 

those of Figure 4, the blob. Note that some chains are slower mixing than others 

for the plot window, evidence of a chain’s hanging around a particular mode for 

an extended period. 

 

 

Tests of Stationarity. 

The Gelman-Rubin diagnostic is a heuristic which estimates a burn-in length T0 

while at the same time it asserts that samples after burn-in are from a stationary 

distribution, the posterior f. To test formally the contention of stationarity, which is 
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that x(t) and x(t’) have the same distribution for arbitrary t and t’ beyond burn-in, we 

adopt a batching approach, in which we divide the post burn-in samples into two 

  

 
Figure 3. Cusums for Savannah River Problem, p = 8, m = 5. 
 
 

 
 
Figure 4. Cusums for Blob Problem, p = 2, m = 5. 
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halves and compare sub-samples from each half by means of a Kolmorogov-

Smirnov test. Acceptance of the test is evidence of internal stationarity of the 

chain. 

 

Specifically, consider a scalar parameter of interest h(x), as in the cusum. 

Assume a burn-in length of T0, obtained by the Gelman-Rubin diagnostic or a 

rough guess. Denote by N the total number of iterations counting from the start 

and T = N – T0 the total number of post burn-in iterations. We compare the two 

sub-samples     h(x(T0 +1) ), ...,h(x (T0 +T / 2))  and    h(x(T0 +T / 2 +1) ), ... ,h(x (T0 +T )) . In order to 

achieve approximately correct p-value levels with the classical two sample 

Kolmogorov-Smirnov (KS) test, we need to reduce the dependence created by 

the Markovian structure. Hence each sub-sample is itself sub-sampled, by 

retaining every rth iteration, resulting in two samples each of size T/2r. The KS 

statistic is essentially the largest absolute difference between the two empirical 

cumulative distribution functions (cdfs). The stochastic engine’s implementation 

of the KS test consists of a plot of the KS p-value as a function of T/2, the size of 

each pre-sub-sampled half. The p-value is the probability of obtaining a KS 

statistic value as large or larger than that recorded by the engine’s simulation, if 

in fact each half is sampling from the same underlying distribution, i.e. there is 

stationarity. Therefore the p-value provides evidence that the chain internally 

exhibits stationarity. The higher the p-value the stronger the evidence of 

stationarity. A p-value below 0.05 is generally considered reason to question the 

assertion that the two halves are random samples from a common distribution. 

Figure 5 is a plot of KS p-values for the Savannah River p = 8 problem described 

in previous sections, with h(x) being centroid depth. Five parallel chains are 

plotted simultaneously, and an autocorrelation adjustment of r = 10 is used for 

each chain. The plots show evidence of stationarity, but their highly oscillatory 
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nature indicates the effect on the empirical cdfs of locally attracting modes in the 

posterior distribution, which can cause a chain to hang up for a while. 

 

 

 
Figure 5. Within Chain Stationarity p-Values for Savannah River Problem,  
p = 8, m = 5. 
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Figure 6. Between Chain Stationarity p-Values for Savannah River Problem,  
p = 8, m = 5. 
 
 

After burn-in, the implication of stationarity is that x(t, i) and x(t, j) should have the 

same distribution for any t  ≥ T0 and any two parallel chains i and j. This assertion 

can be tested formally by a Kolmogorov-Smirnov two sample test similar to the 

above for a single chain, in which we compare    h(x(T0 +1,i) ), ...,h(x (T0 +T,i ))  and 

    h(x(T0 +1, j) ), ... ,h(x (T0 +T, j )) . Again reduce the Markovian dependence by retaining  

every rth iteration so that each sub-sample has size T/r. Plots of p-values versus 

T for pairs of chains are shown in Figure 6 for the Savannah River problem of 

Figure 5. There is a curve for each of the 10 chain pairs. Evidence of stationarity 

is demonstrated for some of the pairs, with the kind of oscillatory character seen 

in Figure 5. However, there are some pairs, which have very small p-values 

throughout. This occurs when one chain is much slower mixing than the other for 

the given window of iterations. This common anomaly may be the reason Robert, 

Ryden, and Titterington stick with within chain stationarity tests and do not 

propose between chain stationarity tests. 
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Tests of Normality. 

A goal of running the engine is to be able to summarize a selected feature of the 

state of nature, for instance the depth of a centroid of interest. The parameter 

may be estimated by a confidence interval obtained by application of the central 

limit theorem for MCMC algorithms. The central limit theorem asserts that the 

value of a parameter averaged over a large number of iterations after burn-in is 

approximately normally distributed. So we need to take some averages from our 

MCMC output and check for normality. 

   

We use the notation of the previous sections: h(x) is the MCMC measurement of 

a scalar parameter of interest, T0 is the burn-in period, derived by the Gelman-

Rubin diagnostic or a rough guess, m is the number of parallel chains, and T is 

the total number of iterations for a chain after burn-in. The issue of unknown 

correlation factors in the variance of h(x) is treated by developing a sub-sampling 

device such that the sampling intervals grow with time, so that the dependence 

between sub-samples vanishes asymptotically. Specifically, define 

 
    
µmT =

1
mT

h(x (t, j ))
t =T0 +1

T0 +T∑j=1

m∑ , 

and 

 
    
vmT =

1
mT

h2(
t=T0 +1

T0 +T∑j =1

m∑ x( t, j )) − µmT
2 , 

which are consistent estimators of the mean and variance of h(x), respectively, 

under the stationary distribution, f. For each chain j we introduce an independent 

sequence (ujk) of independent integer-valued random variables defined by  

     ujk ~ 1+ Poi (νk ) , 

where Poi(νk) denotes a Poisson random variable with mean νk, and the means 

satisfy νk = νkd for some ν ≥ 1 and d > 0. The sums 

       tjk = T0 + uj1 +L+ ujk , k = 1, 2, … 

are then used as sampling instants for sub-sampling h(x). The number of 

sampling instants having occurred up to T is 
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NT = kjj=1

m∑ , 

where 

   k j = sup k : t jk ≤T{ }.  

The central limit theorem then asserts that 

 
    
ZmT =

1
NTvmT

h( x( t jk , j ) ) −µmT[ ]k =1

k j∑j=1

m∑   

is approximately distributed as a standard normal random variable for sufficiently 

large NT.  

 

To test normality in the stochastic engine we construct a sequence of means of 

h(x), with sampling instants developed as above, but with care taken that each 

mean has the same sample size n, where n is large enough that normality should 

be expected. In our applications, n = 40 has been used. The first mean in the 

sequence is that based on selection of T = T1 such that NT = n, i.e. T1 is the 

minimum number of iterations for which a total of n sampling instants can be 

extracted from the m parallel chains. The sampling instants for chain j are tj1 

through     tjk j1
, where 

     k j1 = sup k : t jk ≤ T1{ } 

is the number of sampling instants devoted to chain j, and of course 

    
kj1j=1

m∑ = n . 

The second mean uses T = T2 such that NT = 2n, with the mean defined over the 

second set of n sampling instants: for chain j the sampling instants are     tjk j1 +1 

through     tjk j2
, where 

        kj2 = sup k : tjk ≤T2{ }, 

and necessarily 

 
    

kj2j=1

m∑ = 2n . 

And so the process goes with the accumulation of n additional sampling instants 

at each stage. For the qth stage we have T = Tq such that NT = qn, and the qth 

 16



mean is defined over the qth set of n sampling instants: for chain j the sampling 

instants are     tjk jq−1 +1 through   tjk jq
, where 

      k jq = sup k : tjk ≤ Tq{ }, 

and 

 
    

kjqj=1

m∑ = qn . 

  

The random variables that are standardized versions of the sequence of means, 

 
    
ZmTq

=
1

nvmTq

h( x(t jk ,j ) ) − µmTq[ ]k= k jq−1 +1

k jq∑j =1

m∑ , q = 1, 2, … 

may be accumulated and tested for normality by a one sample Kolmogorov-

Smirnov (KS) statistic, which is essentially the maximum absolute difference 

between the empirical cdf of the sequence   ZmTq( ) and the standard normal cdf. 

 

The stochastic engine’s implementation of the one sample KS test of normality 

consists of a plot of KS  p-values as they become available in the sampling 

process. Specifically, once the Q standardized means 
    ZmT1

,K,ZmTQ
 are 

generated, the KS one sample statistic (with respect to sample size Q) based on 

the empirical cdf of these values and the standard normal cdf is calculated, and 

the corresponding p-value is calculated and plotted versus mTQ, the total number 

of post burn-in samples associated with this collection of means. The p-value is 

the probability of obtaining a KS statistic value as large or larger than that 

recorded by the engine’s simulation, if in fact there is standard normality of the 

standardized means. The higher the p-value the stronger the evidence of 

normality. A p-value below 0.05 is generally considered reason to question the 

validity of the assertion of normality. Figure 7 displays KS one sample p-values 

for the Savannah River p = 8 five chain problem depicted in previous figures. 

There is strong evidence of normality. In the simulation means of size n = 40 

were generated, with sub-sampling based on a Poisson generator having ν = 10 

and d = 0. The limiting choice of d was made for the sake of economy and also 
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because small values of d do not make a perceptible difference in the case of a 

few thousand iterations. 

 

 

 

 

 
 

Figure 7. Normality p-Values for Savannah River Problem, p = 8, m = 5. 

 

 18



References. 

1. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and 

Teller, E. (1953), “Equations of State Calculations by Fast Computing 

Machines”, Journal of Chemical Physics, 21, 1087-1091. 

 

2. Hastings, W. K. (1970), “Monte Carlo Sampling Methods Using Markov 

Chains and Their Applications”, Biometrika, 57, 97-109. 

 

3. Gelman, A., and Rubin, D. B. (1992), “Inference From Iterative Simulation 

Using Multiple Sequences”, Statistical Science, 7, 457-511. 

 

4. Yu, B., and Mykland, P. (1994), “Looking at Markov Samplers Through 

Cusum Path Plots: A Simple Diagnostic Idea”, Technical Report 413, 

University of California at Berkeley, Dept. of Statistics. 

 

5. Robert, C. P., Ryden, T., and Titterington, D. M. (1999), “Convergence 

Controls for MCMC Algorithms, With Applications to Hidden Markov 

Chains”, Journal of Statistical Computation and Simulation, 64, 327-355. 

 

6. Cowles, M. K., and Carlin, B. C. (1996), “Markov Chain Monte Carlo 

Convergence Diagnostics: A Comparative Review”, Journal of the 

American Statistical Association, 91, 883-904. 

 

7. Robert, C. P. (1998), Discretization and MCMC Convergence 

Assessment, New York: Springer. 

 
 
 
            
            
     
 
 
 

 19



University of California
Lawrence Livermore National Laboratory
Technical Information Department
Livermore, CA 94551

 

 20


